
The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

The Hidden Art of Thread-Safe
Programming: Exploring

java.util.concurrent
Dr Heinz M. Kabutz

Last Updated 2025-06-19

© 2025 Heinz Kabutz – All Rights Reserved

1

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

A Tale of java.util.Vector
 One of the first classes in Java

– Part of Java 1.0

 Was designed to be thread-safe from concurrent updates
– Most methods synchronized, locking on "this"

• But missed synchronization on read-only methods like size()

2

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Java 1.0 Vector
 size() could return stale values

3

public class Vector1_0 {
 protected int elementCount;

 public final int size() {
 return elementCount;
 }

 public final synchronized void addElement(Object obj) {
 // ...
 }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.1
 Introduced a potential race condition

4

public class Vector1_1 implements java.io.Serializable {
 protected int elementCount;

 public final int size() {
 return elementCount;
 }

 public final synchronized void addElement(Object obj) {
 // ...
 }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.4
 Fixed size() visibility and serialization race condition

5

public class Vector1_4 implements java.io.Serializable {
 protected int elementCount;
 public synchronized int size() {
 return elementCount;
 }
 public synchronized void addElement(Object obj) {
 // ...
 }
 private synchronized void writeObject(ObjectOutputStream s)
 throws IOException {
 s.defaultWriteObject();
 }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

However, Java 1.4 Can Deadlock!
 Often, fixing one type of bug, introduces others

– Mentioned in The Java Specialists' Newsletter #184
• https://www.javaspecialists.eu/archive/Issue184.html

6

Vector v1 = new Vector();
Vector v2 = new Vector();
v1.addElement(v2);
v2.addElement(v1);
// serialize v1 and v2 from two different threads

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Moving to Java 1.7
 Fixed deadlock by calling writeFields() outside of lock

7

public class Vector1_7 implements Serializable {
 private void writeObject(java.io.ObjectOutputStream s)
 throws java.io.IOException {
 final java.io.ObjectOutputStream.PutField fields = s.putFields();
 final Object[] data;
 synchronized (this) {
 fields.put("capacityIncrement", capacityIncrement);
 fields.put("elementCount", elementCount);
 data = elementData.clone();
 }
 fields.put("elementData", data);
 s.writeFields();
 }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

New Potential Deadlock Added in Java 8
 Should not call "alien methods" like accept() whilst locked

8

public class Vector8<E> implements Serializable {
 public synchronized void forEach(Consumer<? super E> action) {
 Objects.requireNonNull(action);
 final int expectedModCount = modCount;
 final E[] elementData = (E[]) this.elementData;
 final int elementCount = this.elementCount;
 for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
 action.accept(elementData[i]);
 }
 if (modCount != expectedModCount) {
 throw new ConcurrentModificationException();
 }
 }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Takeaways from Vector Bugs
 Thread safety is subtle

 Tests don’t always expose concurrency bugs
– We need to know what to look for

9

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

/usr/bin/whoami
 Heinz Kabutz

– Author of The Java Specialists' Newsletter for the last 25 years
• Read in over 156 countries
• Recipient of Java Community Lifetime Achievement in May 2025
• Join me on www.javaspecialists.eu

– Over 200 conference talks www.javaspecialists.eu/about/heinz
– Taught advanced Java to tens of thousands since 1999
– One of the first elected Java Champions - javachampions.org

10

https://www.javaspecialists.eu
https://www.javaspecialists.eu/about/heinz
http://javachampions.org

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

java.util.concurrent Teardown

11

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Writing Correct Thread-Safe Code is a Challenge
 The Java Memory Model is our rule book

– happens-before, ordering, access safety, etc.
– However, we cannot test whether a class adheres to the JMM 100%

 We run our code, and hope it works correctly
– Some bugs are very hard to detect

12

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LockSupport Rare Lost unpark()
 Bug 8074773

– In JDK 7, class loading could consume the unpark()
• Extremely difficult to diagnose and discover, took a week of CPU time
• Recommended workaround was to force LockSupport to load early

– Since JDK 9, ConcurrentHashMap ensures LockSupport is loaded

13

static {
 // Prevent rare disastrous classloading in first call to LockSupport.park.
 // See: https://bugs.openjdk.java.net/browse/JDK-8074773
 Class<?> ensureLoaded = LockSupport.class;
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

So Why Study the java.util.concurrent Classes?
 Brian Goetz, JCiP:

– If you need to implement a state-dependent class the best strategy is
usually to build upon an existing library class such as Semaphore,
BlockingQueue, or CountDownLatch.

 By studying java.util.concurrent in detail, we learn
– What is available
– How to write robust, thread-safe classes

14

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Good vs Bad Code
 We all make mistakes

– In German, we say: „Vertrauen ist gut, Kontrolle ist besser!“
– Test Driven Development

• But very difficult to do with multi-threaded code

 Better to rely on well-known synchronizers
– And then, use those that are most commonly used

• Favour ConcurrentHashMap over ConcurrentSkipListMap
• Favour LinkedBlockingQueue over LinkedBlockingDeque

15

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Contributing Bug Reports
 Anybody can report a Java bug: https://bugreport.java.com

– I've reported quite a few javaspecialists.eu/about/jdk-contributions/
– Most of these were in little used classes

• 1 in LinkedTransferQueue
• 1 in ThreadLocalRandom
• 1 in ConcurrentSkipListMap
• 1 in ArrayBlockingQueue
• 5 in LinkedBlockingDeque (all fixed in Java 26)

– The less used a class is, the higher the chance of bugs

16

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Eat Your Own Dogfood Collections
 How many new instances of each in the JDK

– 213: ConcurrentHashMap
– 11-24: CopyOnWriteArrayList, ConcurrentLinkedQueue,

ConcurrentLinkedDeque, FutureTask, LinkedBlockingQueue
– 2-6: CountDownLatch, ArrayBlockingQueue, SynchronousQueue,

ConcurrentSkipListSet
– 1: ConcurrentSkipListMap, LinkedBlockingDeque,

LinkedTransferQueue, Semaphore
– 0: CopyOnWriteArraySet, CyclicBarrier, Exchanger, Phaser,

PriorityBlockingQueue

17

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Let's Say That Again
 Use extremely common thread-safe classes

– ConcurrentHashMap
– LinkedBlockingQueue
– ConcurrentLinkedQueue

 I only found bugs in rarely used classes

18

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Before we continue ...
 Get our Data Structures in Java Course here

– tinyurl.com/voxxed-lux-25
– Coupon expires today at 17:30

• You have life-time access to course

 For those watching the recording
– Sign up to The Java Specialists' Newsletter

• www.javaspecialists.eu
• Reply to the welcome mail that you would

like this course

19

http://www.javaspecialists.eu

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Lessons from Striped64

20

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LongAdder vs AtomicLong
 Let's do a quick comparison of incrementing 100m times

– AtomicLong vs LongAdder (Striped64)

21

IntStream.range(0, 100_000_000)
 .parallel()
 .forEach(_ -> atomicLong.getAndIncrement());

IntStream.range(0, 100_000_000)
 .parallel()
 .forEach(_ -> longAdder.increment());

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Demo
 Magic? Let's look at how LongAdder / Striped64 works

22

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Takeaways
 Best way to deal with contention is to not have any

23

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

StartingGun Synchronizer

24

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

StartingGun Synchronizer
 Let's say we have a service that takes time to be started

– Any other part of the system that depends on it should wait
• But we do not want to deal with InterruptedException

– Once all the data is set up, we call ready(), awaking waiting threads

25

public interface StartingGun {
 void awaitUninterruptibly();
 void ready();
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Using synchronized and wait()/notifyAll()
26

public class StartingGunMonitor implements StartingGun {
 private boolean ready = false;
 public synchronized void awaitUninterruptibly() {
 boolean interrupted = Thread.interrupted();
 while (!ready) {
 try {
 wait(); // not fully compatible with older Loom versions
 } catch (InterruptedException e) {
 interrupted = true;
 }
 }
 if (interrupted) Thread.currentThread().interrupt();
 }
 public synchronized void ready() { ready = true; notifyAll(); }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Basing StartingGun on CountDownLatch
27

public class StartingGunCountDownLatch implements StartingGun {
 private final CountDownLatch latch = new CountDownLatch(1);
 public void awaitUninterruptibly() {
 var interrupted = Thread.interrupted();
 while (true) {
 try {
 latch.await();
 break;
 } catch (InterruptedException e) {
 interrupted = true;
 }
 }
 if (interrupted) Thread.currentThread().interrupt();
 }
 public void ready() { latch.countDown(); }
}

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Issues With These Approaches
 Synchronized wait() not fully compatible with virtual threads

– Fixed in Java 24

 Both times, interrupt would cause InterruptedException
– We hide it, but we still pay the cost of creating the exception

 Another way is to copy what CountDownLatch does
– Quick demo

28

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Lock Splitting:
LinkedBlockingQueue

29

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

LinkedBlockingQueue Design
 Single lock would cause put()/take() contention

 Has separate putLock and takeLock ReentrantLock
– We can put() and take() from a single queue at the same time
– Has higher throughput for the SPSC case

• And surprises for the SPMC case
– Subtleties regarding visibility due to two locks

• Use AtomicInteger count as a volatile synchronizer

 Demo LockSplittingDemo

30

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Weakly Consistent Iterators –
ArrayBlockingQueue

31

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

ArrayBlockingQueue Circular Array Queue
 Weakly consistent iteration

– ArrayDeque would cause a ConcurrentModificationException

– However, what if we circle completely around the array?
• ArrayBlockingQueue has to notify its current iterators

– But how?

 Demo WeaklyConsistentViaWeakReferences

32

var queue = new ArrayBlockingQueue<Integer>(10);
Collections.addAll(queue, 1, 2, 3, 4, 5);
var iterator = queue.iterator();
for (int i = 0; i < 3; i++) System.out.println(iterator.next()); // 1, 2, 3
Collections.addAll(queue, 6, 7, 8, 9, 10);
iterator.forEachRemaining(System.out::println); // 4, 5, 6, 7, 8, 9, 10

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Double-Checked-Locking –
CopyOnWriteArrayList

33

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

CopyOnWriteArrayList DCL
 In several places, checks before locking

 Demo DCLOnSteroidsCOWDemo

34

public boolean remove(Object o) {
 Object[] snapshot = getArray();
 int index = indexOfRange(o, snapshot, 0, snapshot.length);
 return index >= 0 && remove(o, snapshot, index);
}
// also addIfAbsent(E e),

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Conclusion

35

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

The Java Specialists' Newsletter
 Make sure to subscribe

– www.javaspecialists.eu/archive/subscribe/

 Readers in 150+ countries

 25 years of newsletters on advanced Java
– All previous newsletters available on www.javaspecialists.eu
– Courses, additional training, etc.

36

The Hidden Art of Thread-Safe Programming: Exploring java.util.concurrent

Don't Forget ...
 Get our Data Structures in Java Course here

– tinyurl.com/voxxed-lux-25
– Coupon expires today at 17:30

• You have life-time access to course

 For those watching the recording
– Sign up to The Java Specialists' Newsletter

• www.javaspecialists.eu
• Reply to the welcome mail that you would

like this course

37

http://www.javaspecialists.eu

